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Fig. 1. To simplify the topology of a 3D shape (a), performing cutting alone (b) or filling alone (c) results in excessive changes, such as removing large
components (box C in (b)), creating long bridges to distant islands (box A in (c)) and large patches to fill in a handle (box B in (c)). Given a set of pre-computed
cuts and fills, our method optimally selects a subset of them to maximally simplify topology while minimizing the impact on the geometry (d). (β : number of
connected components, handles, and cavities; д: geometric cost)

We present a novel algorithm for simplifying the topology of a 3D shape,

which is characterized by the number of connected components, handles,

and cavities. Existing methods either limit their modifications to be only

cutting or only filling, or take a heuristic approach to decide where to cut or

fill. We consider the problem of finding a globally optimal set of cuts and

fills that achieve the simplest topology while minimizing geometric changes.

We show that the problem can be formulated as graph labelling, and we

solve it by a transformation to the Node-Weighted Steiner Tree problem.

When tested on examples with varying levels of topological complexity, the

algorithm shows notable improvement over existing simplification methods

in both topological simplicity and geometric distortions.
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1 INTRODUCTION
Shapes reconstructed from raw data often include many topological

features, such as connected components, topological handles, and

cavities (i.e., voids inside the shape).While some of these features are

intended, many could be artifacts of the reconstruction (e.g., Figure

1 (a)). Excessive amount of topological features can be detrimental

to many geometry processing tasks, including parameterization,

shape analysis, and physical simulations.

A topological feature can be removed either by cutting contents

from the shape or filling the shape with new contents (see Figure 2).

For example, a handle can be removed by cutting open the handle

body or filling in the handle hole. A connected component can be
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Fig. 2. A topological feature (e.g., a connected component, handle, or cavity)
can be removed by either cutting or filling.

removed by either deleting that component (i.e., cutting) or connect-

ing it with another component (i.e., filling). Similarly, a cavity can be

removed by either filling the cavity or cutting a tunnel that connects

the cavity with the exterior. While different operations may lead to

the same topological outcome, they can have very different impact

on the geometry of the shape. Ideally, a topological simplification

algorithm should remove as many topological features as possible

while changing the geometry as little as possible.

Many existing methods for topological simplification are mono-
tonic, in that they perform only cutting or only filling to the entire

shape. These methods can make excessive changes to the shape

when there are features that are better to be cut (e.g., the small

islands in Figure 1 (a) box A and the thin handle in box B) as well as

features that are better to be filled (e.g., the big component in box

C). Few methods are non-monotonic, in that they cut some features

and fill others. In these methods, however, the decision of where

to cut or fill is made heuristically to locally minimize the change

to the geometry. Such heuristics are prone to make globally sub-

optimal choices, particularly when the decision of cutting or filling

one topological feature affects how other features can be removed

(see more discussion in the next section).

In this paper, we attempt to find the globally optimal set of cuts
and fills that maximally simplifies the topology while minimizing

geometric changes. Leveraging existing monotonic simplification

methods, we take as input a pre-computed set of cuts and fills, each

associated with some geometric cost (e.g., total volume of the cut

or fill). The problem then becomes selecting a subset of these cuts

and fills with the minimal total geometric cost, such that applying

them to the shape maximally reduces the number of connected

components, handles, and cavities.

To solve the optimal selection problem, we make two techni-

cal contributions. First, we re-formulated the problem as graph

labelling, where the given cuts and fills are nodes in the graph and

a binary label indicates whether a cut or fill is selected (Section 5).

While the graph formulation makes the problem more computation-

friendly, finding the optimal labelling is still challenging, since the

labelling energy involves the number of connected components in

the labelled sub-graphs. Our second contribution is an algorithm

for solving this labelling problem by transforming it to the well-

known Node-Weighted Steiner Tree (NWST) problem (Section 6).

The transformation allows us to leverage state-of-the-art solvers of

NWST (e.g., [Leitner et al. 2018]) to find a near-optimal labelling.

We demonstrated our algorithm on cuts and fills produced by two

popular monotonic simplification methods, morphological opening

and closing [Nooruddin and Turk 2003], and topology-controlled

inflation and deflation [Bischoff and Kobbelt 2002; Kriegeskorte and

Goebel 2001; Szymczak and Vanderhyde 2003]. When tested on a

suite of shapes with a wide range of topological complexity, our

method consistently achieves lower geometric cost than existing

simplification methods while being equally, if not more, effective

in reducing topological complexity (e.g., Figure 1 (d), and more in

Section 7).

2 RELATED WORK
We briefly review existing methods for simplifying the topology of

3D shapes, with an emphasis on how the decisions of where to cut

or fill are made. In-depth discussions of many of these methods can

be found in the survey [Attene et al. 2013]. We conclude with a brief

discussion on topology-aware surface reconstruction methods.

Monotonic methods. These methods perform only cutting or only

filling to the entire shape. A common monotonic approach to re-

moving topological handles is to first represent the shape (resp.

its complement) by a weighted connectivity graph, where the edge

weight encodes the geometric cost of cutting (resp. filling), then iden-

tify edges to be removed from the graph using a minimum-weighted

spanning tree (MST), and finally perform the corresponding cuts

(resp. fills) to the shape. The graph can be created in various ways,

such as an axis-aligned Reeb graph [Chen and Wagenknecht 2006;

Shattuck and Leahy 2001], an adjacency graph of segmented parts

[Han et al. 2002], and a curve skeleton [Zhou et al. 2007]. While this

approach solves the handle-cutting or handle-filling problem opti-

mally (due to optimality of MST), extending it to also make globally

optimal choice between cutting and filling for each handle seems

challenging. A remedy is to alternate between running the method

on the shape and on the complement, each time cutting all handle

bodies or filling all handle holes smaller than some user-specified

parameter. However, the result can be sensitive to the choice of

parameters (see Figure 10), and there is no guarantee of optimality.

Furthermore, these methods cannot reduce the number of connected

components or cavities.

To simplify all types of topological features (components, handles,

cavities), onemay applymorphological opening or closing to a shape

represented by voxels [Nooruddin and Turk 2003]. Parameterized

by a structure element, opening (resp. closing) cuts away (resp. fills

in) small topological features where the structure element cannot

fit inside (resp. outside) the shape. However, both operators may in-

troduce new topological features, and the user has no direct control

over the final topology. Several authors [Bischoff and Kobbelt 2002;

Kriegeskorte and Goebel 2001; Szymczak and Vanderhyde 2003]
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Fig. 3. A scenario where a greedy heuristic for choosing cutting or filling
produces suboptimal results. See text for details.

achieved controlled simplification by deflating (resp. inflating) an

initial seed towards the shape while forbidding, or conditionally

allowing, topological changes. A different approach was presented

recently [Chambers et al. 2018], which uses a heuristic to explore

candidate fills with the goal of maximally simplifying topology. All

of these methods work on voxelized shapes. However, since these

methods cannot selectively apply cuts and fills to different parts

of the shape, they may lead to excessive shape modifications (e.g.,

Figure 1 (b,c)).

Non-monotonic methods. These methods perform both cutting

and filling on the shape. The majority of non-monotonic methods

can only remove topological handles. They attempt to minimize

different metrics of geometric changes, such as the total lengths of

loops on the surface (non-separating paths) [Wood et al. 2004], the

total volume of voxels to be cut or filled [Kriegeskorte and Goebel

2001], or the volume weighted by image intensity [Ségonne et al.

2007]. To the best of our knowledge, the MendIT method of [Ju et al.

2007] is the only non-monotonic method that can remove all three

types of topological features. This method represents the topology

of a voxelized shape and its complement by two graphs, which are

updated as the shape is being modified, and uses information from

both graphs to decide where to cut or fill next in order to minimize

the total volume of change.

All these non-monotonic methods apply a greedy heuristic to

decide which feature to remove next and whether it should be cut or

filled. The heuristic favors the topological modification that results

in the least geometric changes at the current stage of the algorithm.

This greedy strategy often fails to make globally optimal decisions.

A simple example is illustrated in Figure 3. To reduce the number of

connected components of the shape in (a), a greedy heuristic would

first remove the small island in the middle, as shown in (b), which

results in a smaller change to the shape than connecting the island

with the other two larger components. However, this move creates

a large gap between the bottom and top components, which forces

the heuristic to remove the bottom component in the next step, as

shown in (c). A solution with a lower overall change to the shape

would instead keep the middle island as a “link” to bridge the other

two components, as shown in (d). We demonstrate many examples

in Section 7 where the greedy heuristic becomes sub-optimal.

Topology-controlled surface reconstruction. A number of surface

reconstruction methods allow the user to control the topology of the

reconstructed surface and hence avoid the need for post-processing

simplification. Some methods are guided by user interaction [Sharf

et al. 2007; Yin et al. 2014], some allow the user to prescribe the

number of handles [Huang et al. 2017; Lazar et al. 2018; Zou et al.

2015], and others take a deformable modeling approach and evolve

a template while restricting topological changes [Han et al. 2003;

Ségonne 2008; Sharf et al. 2006; Zeng et al. 2008]. However, since

the majority of reconstruction methods do not offer direct topology

control, topological simplification remains necessary.

3 BACKGROUND
Our algorithm is designed on shapes represented as cell complexes.

We first briefly review their definitions and properties. In-depth dis-

cussions can be found on standard textbooks on algebraic topology

such as [Hatcher 2002].

Intuitively, a cell complex represents a decomposition of space

into topologically simple units, called cells. A k-dimensional cell, or

k-cell, is an open set homeomorphic to an open k-dimensional ball.

We call a cell x a face of cell y if x
is contained in the boundary of y.
The insert shows a quadrilateral 2-

cell and its faces (four 1-cells and

four 0-cells). A finite set of disjoint

cells (like the one in the insert) is

called a cell complex if, for each

cell in the complex, all its faces

are also in the complex. Two sets

of cells (which may not form cell

complexes) are connected if some cell in one set is the face of a cell

in the other set.

The n-th Betti number βn of a cell complex is the rank of the n-th
homology group. Intuitively, for a 3-dimensional cell complex X ,
β0(X ) is the number of connected components of X , β1(X ) is the
number of topological handles of X , and β2(X ) is the number of cav-

ities in X (i.e., number of connected components of the complement

space X minus 1). The alternating sum of Betti numbers defines the

Euler characteristic χ :

χ (X ) = β0(X ) − β1(X ) + β2(X ) (1)

Alternatively, the Euler characteristic can be found by the alternat-

ing sum of the number of cells in X at different dimensions:

χ (X ) = k0(X ) − k1(X ) + k2(X ) − k3(X ) (2)

where kd (X ) is the number of d-dimensional cells in X .

4 PROBLEM STATEMENT
Topological simplification aims at minimally modifying a shape

to remove as many topological features (connected components,

handles, cavities) as possible. However, since the number of possible

modifications to the shape is virtually infinite, the problem can be

untractable. Leveraging existing topological simplification methods,

we consider a limited space of shape modifications in the form of

a pre-defined set of cuts (contents to be removed from the shape)

and fills (contents to be added to the shape). These cuts or fills can
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be obtained by running a monotonic simplification method in a

“cut-only” mode or “fill-only” mode (as reviewed in Section 2). In

addition, we assume that each cut or fill is associated with some

geometric cost. Given these inputs, the topological simplification

problem reduces to selecting a subset of the cuts and fills with the

least total geometric cost such that the resulting shape has the

simplest topology.

Formally, we represent the space by a 3D cell complex Ω (e.g., a

hexahedral or tetrahedral mesh). Let O be the set of all 3-cells (e.g.,

hexahedra or tetrahedra). As input, we are given a set of shape cells
T ⊂ O, cut cells C ⊂ T and fill cells F ⊂ O \T , and a geometric cost

д(v) for each cut or fill cell v . For topological analysis, we define
the shape as the closure Ω(T ), which is a cell complex made up of

3-cells in T and their (lower-dimensional) faces.

We seek a binary labelling of the cut cells and fill cells, indicating

whether they belong to the shape (label 1) or not (label 0), such

that the modified shape has the least total number of topology

features and, secondarily, the sum of geometric costs over all cut

cells removed from the shape and all fill cells added to the shape is

minimal. Given a labelling L, we denote the set of cut cells C (resp.

fill cells F ) that are labelled δ = 1, 0 under L as CL,δ (resp. FL,δ ).
The cut cells selected to be removed from the shape, and the fill

cells selected to be added to the shape, are therefore CL,0 and FL,1,
respectively. The modified shape is the closure of all 3-cells that

remain in the shape,X = Ω((T \CL,0)∪FL,1). Our two objectives can
be expressed by minimizing the following vector lexicographically,β0(X ) + β1(X ) + β2(X ),

∑
v ∈CL,0∪FL,1

д(v)

 (3)

where βn is the n-th Betti number. Since the first term of Equation

3 is an integer, we can equivalently minimize the following scalar

value,

λ ∗ (β0(X ) + β1(X ) + β2(X )) +
∑

v ∈CL,0∪FL,1

д(v), (4)

where λ is any constant greater than

∑
v ∈C∪F д(v). To further sim-

plify the computation of this energy, we replace β1(X ) (the number

of handles in X ) by the Euler characteristic χ (X ), which can be com-

puted by counting cells in X (see Equation 2). Substituting Equation

1 into the equation above, we arrive at the following scalar energy

of the labelling L,

E(L) = 2λ ∗ (β0(X ) + β2(X )) − λ ∗ χ (X ) +
∑

v ∈CL,0∪FL,1

д(v), (5)

We will discuss in Section 7 how we obtain the cut cells C , fill
cells F , and geometric cost д from existing monotonic topological

simplification algorithms [Bischoff and Kobbelt 2002; Chambers

et al. 2018; Kriegeskorte and Goebel 2001; Nooruddin and Turk

2003; Szymczak and Vanderhyde 2003]. Since these algorithms all

operate on voxelized shapes, our implementation is specialized to

cell complexes Ω made up of hexahedral cells O. However, our

algorithm, as described in the next two sections, applies to any type

of 3D cell complex.

5 GRAPH FORMULATION
To solve the labelling problem formulated above, we will first re-

formulate it as a graph labelling problem. The graph formulation

allows us to utilize existing graph optimization techniques, as we

shall see in the next section. Our graph formulation transforms the

energy in Equation 5, which is expressed in terms of the topology

and geometry of the shape, into a labelling energy on the graph.

In particular, the number of connected components and cavities of

the modified shape (β0(X ), β2(X )) are captured by the number of

connected components in the 1-labelled and 0-labelled subgraphs,

respectively. The Euler characteristic (χ (X )) and the geometric cost

(д(v)) are transformed into the sum of per-node labelling costs.

5.1 Graph construction
To faithfully capture the topology of the shape, our graph represents

not only the cut and fill cells, but also the remaining 3-cells in the

space. The latter consists of two types of 3-cells, kernel cells T \C
and neighborhood cells O \ (T ∪ F ). Regardless of the labelling of

the cut or fill cells, kernel cells are always in the shape whereas

neighborhood cells are always outside the shape.

The graph is denoted by G = {V , E}, where V , E are the sets of

nodes and edges. Each node s ∈ V represents a group of 3-cells of

the same type (i.e., kernel, cut, fill, or neighborhood), denoted by

Os . We call s a kernel, cut, fill, or neighborhood node if Os consists

of the respective type of 3-cells. There are a number of reasons

for defining Os as a group of cells instead of a single cell. First, it

usually takes a collection of cut or fill cells to achieve the desired

topological change (e.g., cutting open a handle body or filling in the

handle hole). Second, defining the graph at the level of cell groups

makes the problem more efficient to solve than labelling individual

cells. More precisely, Os is a connected component of 3-cells of the

same type, by some notion of connectivity that will be defined below.

Similarly, two nodes s, t ∈ V are connected by an edge in E if their

cells Os ,Ot are connected. A 2D illustration of graph construction

is shown in Figure 4 (a,b).

The key to the definition of nodes and edges is the notion of

connectivity between two 3-cells. Our connectivity rule is chosen so

that the topology of the shape can be captured by graph labelling.

More precisely, consider a binary labelling L of the nodes V , so that

setting L(s) = δ for δ = 0, 1 and node s ∈ V assigns label δ to all

3-cells in Os . Note that L(s) = 1 (resp. L(s) = 0) for any kernel (resp.

neighborhood) node s . We define the δ -labelled subgraph of G for

δ = 1, 0, denoted as GL,δ , as the set of all i-labelled nodes and all

edges connecting two i-labelled nodes. In the 2D example of Figure

4 (c), the 1-labelled and 0-labelled subgraphs are colored magenta

and cyan, respectively. Ideally, for any labelling L, each connected
component ofGL,1 should correspond to a connected component of the
shape, and each connected component of GL,0 should correspond to
either a cavity of the shape or the infinite background.

Straight-forward connectivity rules often fail to achieve this goal.

We illustrate with a 2D quadrilateral cell complex in Figure 5. Con-

sider the input in (a), and specifically the three fill cells u,v,w .

Suppose we adopt the connectivity rule that two 2-cells are con-

nected if they share any common face (e.g., a 1-cell or a 0-cell). Then

u,v,w belong to a single connected component. This component is
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Fig. 4. Graph construction and labelling on a quadrilateral cell complex
in 2D. (a): Input cell complex with kernel cells (gray), cut cells (red), fill
cells (blue), and neighborhood cells (white). (b): The graph with kernel node
k1, cut nodes c1, c2, fill nodes f1, f2, and neighborhood node n1 (the cells
represented by each node are marked in (a)). The kernel and neighborhood
nodes are colored magenta and cyan, respectively, to indicate that they are
always labelled 1 and 0. (c): A binary labelling of the cut nodes and fill nodes
as 1 (magenta) and 0 (cyan). Edges in each labelled subgraph are colored
accordingly. (d): The modified shape defined by the labelling in (c).

represented by one fill node, noted as f1, which is connected to both

the kernel node k1 and neighborhood node n1, as shown in (b). If f1
is labelled 0, the shape (consisting of only kernel cells) would have

one cavity (left behind by w) and one background. However, the

0-labelled subgraph (colored cyan in the graph of (b)) has only one

connected component. On the other hand, suppose we adopt the

connectivity rule that two 2-cells are connected only if they share a

common 1-cell. Thenu,v,w are disconnected from each other. They

are each represented by a fill node, as shown in the graph in (c). If

these fill nodes are all labelled 1, the shape (consisting of all kernel

and fill cells) would have one connected component. However, the

1-labelled subgraph (colored magenta in the graph of (c)) consists

of two connected components, since the fill node f1 (representing
cell u) is not connected to other fill nodes or the kernel node k1.

We propose a connectivity rule that allows our graph to correctly

capture the topology of the shape, at the cost of slightly restricting

the space of labellings. The new connectivity rule considers not

only the spatial configuration of two 3-cells, but also their types and

types of their surrounding cells. We rank the four types of 3-cells in

the order of kernel, cut, fill, and neighborhood, so that the kernel

type has the highest rank and neighborhood type has the lowest

rank. We define a rank-based connectivity (or R-connectivity) as:

Fig. 5. Comparing graphs constructed from the same input (a) by assuming
that two 2-cells are connected if they share any common face (b), if they
share a common 1-dimensional face (c), and if they are R-connected (d). See
text for details.

Definition 5.1. Two 3-cells u,v are R-connected if they share a

common face that is not the face of another 3-cell whose rank is

higher than both u,v .

We again use the 2D example of Figure 5 (a) to illustrate R-

connectivity. Note that the two fill cells u,v are R-connected, be-

cause they share a common face (x ) that is a face of only neighbor-

hood cells (colored white), which are at a lower rank than fill cells.

On the other hand, fill cells v,w are not R-connected, because their

only common face (y) is also the face of some kernel cells (colored

gray), which are at a higher rank than fill cells. As a result, the graph,

shown in Figure 5 (d), consists of two fill nodes, one representing

u,v (noted as f1) and the other representing w (noted as f2). One
can verify that, for any labelling of f1, f2, the 1-labelled subgraph

has the same number of connected components as the shape, while

the number of connected components in the 0-labelled subgraph is

the number of cavities of the shape plus 1.

The following statement formalizes how our graph, based on

R-connectivity, captures the topology of the shape:

Proposition 5.2. A labelling L is called proper if it satisfies the
following constraint: if a cut node s and a fill node t are connected by
an edge, than either L(s) = 1 or L(t) = 0. Denote the modified shape
as X = Ω(∪L(s)=1Os ). For any proper labelling L,

(1) β0(X ) = β0(GL,1).
(2) β2(X ) = β0(GL,0) − 1.

where β0(S) counts the number of connected components in a graph S .
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The proof is given in the Appendix A. The properness constraint

essentially forbids a connected pair of cut and fill to be applied to

the shape at the same time. We argue that this constraint does not

impose a significant restriction on the space of labelling that we

are interested in. Note that such a pair usually acts on the same

topological feature (e.g., c1, f1 or c2, f2 in Figure 4). Since using both

the cut and the fill would likely lead to increased geometric cost

without any further reduction in topology, it is reasonable to exclude

such labelling in our solution space.

5.2 A graph labelling problem
We shall re-formulate the problem posed in Section 4 to a labelling

problem on the graph constructed above. The key is to express the

energy E of Equation 5 as an energy on the labelled graph. The

previous section showed that the first part of E is captured by the

connected components in the 0- and 1-labelled subgraphs for any

proper labelling (Proposition 5.2). In this section, we show that the

remaining part of E can be written as the sum of labelling costs

defined at each graph node.

We first re-write the Euler characteristic so that it can be ex-

pressed as the sum of node-wise quantities. We do so by decom-

posing the modified shape X = Ω(∪L(s)=1Os ) into groups of cells,

each associated with a graph node. Specifically, we define Ωs as

the subset of cells in the closure Ω(Os ) that are not faces of any

3-cell ranking higher than Os . The set Ωs consists of all 3-cells in

Os as well as some of their lower-dimensional faces. As we show

in Appendix A (Lemma A.1 (1) and equality 11), for any proper

labelling, Ωs of all 1-labelled nodes s ∈ V form a decomposition of

the shape X . As a result, χ (X ) is simply the sum of χ (Ωs ) over all

1-labelled nodes s . This equality can be further transformed into

χ (X ) =
∑

s ∈VC∪VK

χ (Ωs ) −
∑

s ∈ VC
L(s) = 0

χ (Ωs ) +
∑

s ∈ VF
L(s) = 1

χ (Ωs )

where VK ,VC ,VF denote the sets of kernel nodes, cut nodes and fill

nodes. Note that the first term is constant regardless of the labelling.

We can now express the minimization of the last two terms of E
in Equation 5 on the graph as minimizing the sum of a node-wise

labelling cost h(s, L(s)) over all nodes s ∈ V , as defined below:

h(s, δ ) =


λ ∗ χ (Ωs ) +

∑
v ∈Os д(v), if s ∈ VC and δ = 0

−λ ∗ χ (Ωs ) +
∑
v ∈Os д(v), if s ∈ VF and δ = 1

0, otherwise

(6)

Intuitively, h captures the change in the Euler characteristic and the

geometric cost with respect to the input shape. As a result, labelling

a cut node as 1 or a fill node as 0 does not incur any cost. Also,

observe that h can be either positive or negative.

Finally, we reformulate the problem posed in Section 4 as a graph

labelling problem, which we call topological labelling (or TL):

Definition 5.3 (Topological Labelling). Find a proper labelling L of

graph G that minimizes:

EG (L) = 2λ ∗ (β0(GL,0) + β0(GL,1)) +
∑

s ∈VC∪VF

h(s, L(s)). (7)

We note that the solution space of TL is smaller than that of

the problem posed in the previous section, since a labelling of the

graph only adds or subtracts a group of (R-connected) cells at a time.

However, the grouping of cells in TL yields a smaller problem to

solve. Moreover, as we shall see in the next section, TL lends itself

well to existing graph optimization tools.

6 OPTIMIZATION
Topology labelling (TL) is a challenging graph optimization problem,

as the energy EG involves the number of connected components in

the labelled subgraphs. To the best of our knowledge, no existing

graph optimization tool can directly minimize such an energy. For

example, the popular graph-cut framework [Boykov et al. 2001] min-

imizes the sum of node-wise and edge-wise labelling costs, which

are inadequate to capture graph connectivity.

We start with a greedy strategy to minimize the energy (Section

6.1). While simple to implement, the strategy can easily produce

sub-optimal results. Next, we introduce a variant of TL, which we

call As-Connected-As-Possible (ACAP) TL, and show that it can be

transformed to the Node-Weighted Steiner Tree (NWST) problem

(Section 6.2). We then present our complete solution that combines

the NWST solver with the greedy strategy (Section 6.3). The section

concludes with ways to improve scalability of the algorithm on large

graphs (Section 6.4).

6.1 Greedy strategy
We first consider a greedy, iterative heuristic to solve TL. Note that

a similar strategy is used in all existing non-monotonic topology

simplification methods [Ju et al. 2007; Kriegeskorte and Goebel 2001;

Ségonne et al. 2007; Wood et al. 2004]. We initialize the labels by

labelling all cut nodes 1 and all fill nodes 0 (i.e., the input shape).

At each iteration, we evaluate the “benefit” of each node as the

decrease in the energy EG if the label of the node is flipped, and flip

the label of the node with greatest benefit that does not violate the

properness constraint in Proposition 5.2. The process is repeated

until no node has a positive benefit.

As illustrated in Figure 6, this straight-forward strategy can easily

produce sub-optimal results. In the initial labelling (a), flipping the

label of the cut node c1 or either of the two fill nodes f1, f2 would
reduce the number of connected components in the shape by 1.

Assuming that cut cells Oc1 have a smaller geometric cost than

those of the fill cells Of1 or Of2 , c1 would have a higher benefit

than f1 and f2, and therefore it will be labelled 0 in the next step,

as shown in (b). Doing so, however, prevents the algorithm from

proceeding any further, because the properness constraint forbids

either f1 or f2 to be labelled 1. This produces a suboptimal result

that contains two connected components. The optimal labelling for

this input would label all three nodes c1, f1, f2 as 1, which results in

a single connected component as shown in (c).

6.2 As-Connected-As-Possible Topology Labelling
To improve upon the greedy heuristic, we hope to transform TL

into some existing graph optimization problem for which mature,

global optimizers have been developed. As our energy concerns

graph connectivity, the Steiner Tree (ST) problems naturally came
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Fig. 6. (a): An input shape (top) and the graph with two fill nodes and
one cut node (bottom) shown with the initial labelling. (b): The greedy
strategy labels the cut node c1 as 0, producing a sub-optimal result with
two connected components. (c): The optimal labelling assigns 1 to all three
nodes c1, f1, f2 so that the shape consists of a single connected component.

to our minds. While many flavors of ST exist, they generally look for

a subgraph in a given graph that connect up a given set of “terminal”

nodes while minimizing the sum of node-wise or edge-wise costs

over the subgraph.

The key difference between our problem, TL, and ST is that the

former maximizes graph connectivity as part of its energy, whereas

the latter imposes connectivity as a constraint. To leverage solvers

of ST, we will consider a variant of TL that treats graph connectivity

as a hard constraint instead of a soft energy term. As we will show,

this TL variant can be reduced to the Node-Weighted Steiner Tree

(NWST) problem.

6.2.1 A variant of TL. Our idea is to impose the constraint on a

labelling L that the two labelled subgraphs, GL,0 and GL,1, are as

connected as they can possibly be. Consider the labelling L1 (resp.

L0) that labels all cut and fill nodes as 1 (resp. 0). Since all kernel

nodes are labelled as 1, the least number of connected components

in the 1-labelled subgraph GL,1 for any labelling L is the number

of those connected components in GL1,1 that contain some kernel

nodes. Symmetrically, since all neighborhood nodes are labelled

as 0, the least number of connected components in the 0-labelled

subgraph GL,0 for any L is the number of those connected com-

ponents in GL0,0 that contain some neighborhood nodes. We call

two kernel (resp. neighborhood) nodes reachable if they lie in the

same connected component of GL1,1 (resp.GL0,0). A maximum set

of mutually reachable neighborhood (resp. kernel) nodes is called a

reachable set. We call a labelling L As-Connected-As-Possible (ACAP)
if each connected component ofGL,1 spans a reachable set of kernel

nodes, and each connected component of GL,0 spans a reachable

set of neighborhood nodes.

We formulate the following variant, called ACAP-TL, that re-

moves the connected components from the energy of TL and im-

poses the ACAP constraint instead:

Definition 6.1 (As-Connected-As-Possible Topological Labelling).
Find a proper and ACAP labelling L of graph G that minimizes:

E∗G (L) =
∑

s ∈VC∪VF

h(s, L(s)). (8)

Fig. 7. (a): Adding the fill cell (blue) to the shapewould reduce one connected
component but create one cavity. (b): The corresponding fill node f1 in the
graph is a double articulation node. (c): f1 is resolved by labelling it as 0 and
merging with connected neighborhood nodes.

Observe that the energy of ACAP-TL, E∗G , is a simple sum of

node-wise labelling costs, which makes the problem closer to an

ST problem. We note that ACAP-TL is not the same as TL, in two

important ways. First, the solution to ACAP-TL may not be the

solution of TL. This is because a labelling that minimizes the TL

energy may not have to be ACAP. For example, the solution of

TL may produce more connected components than the solution

of ACAP-TL but with many fewer handles. Second, unlike TL, a

solution of ACAP-TL may not exist, if no labelling can satisfy the

ACAP constraint. A typical example is when a cut or fill node is an

articulation node in bothGL1,1 andGL0,0. That is, labelling the node

as either 1 or 0 would disconnect a reachable set of neighborhood

or kernel nodes. We call such nodes double articulation nodes. This
situation is illustrated in Figure 7 (a,b), where the fill node f1 is

the articulation node. As we shall discuss in Section 6.3, we resolve

these two differences by combining greedy heuristics, like the one

introduced in the previous section, with solving ACAP-TL.

6.2.2 Reduction to NWST. We can reduce the ACAP-TL problem to

the Node-Weighted Steiner Tree (NWST) problem. Consider a graph

H = {U ,A,R,ω} with nodesU , edges A, terminal nodes R ⊆ U , and

weights ω : U \R → R on the non-terminal nodes. The NWST prob-

lem seeks a connected subgraph of H that spans R and minimizes

the sum of weights over non-terminal nodes in the subgraph.

At a first glance, ACAP-TL differs from NWST in several ways.

First, while NWST only asks the subgraph to be connected, an ACAP

labelling requires both the 1-labelled and 0-labelled subgraphs to be

connected. Second, NWST requires all terminals to be connected,

whereas only nodes (whether kernel or neighborhood) within each

reachable set need to be connected in ACAP-TL. Third, ACAP-TL

has an additional constraint - the labelling has to be proper.

We shall construct a new graph H from G, such that a solution

of NWST on H corresponds to a solution of ACAP-TL on G. As we
explain below, the graph H is designed to address the differences

between ACAP-TL and NWST mentioned above. The construction

is also illustrated in Figure 8.

First, we create one terminal node in H for each kernel node and

neighborhood node in G. These two sets of terminals are denoted

asUK ,UN respectively. In addition, for each group of terminals in

UK (resp. UN ) representing a reachable set of kernel (resp. neigh-

borhood) nodes, we select an arbitrary terminal in that group and

connect it with an auxiliary terminal node π . This ensures that all
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terminals are connected by a subgraph of H as long as each group

of terminals representing a reachable set is connected.

Next, we create two types of non-terminal nodes inH , denoted by

UC ,UF . Each node p inUC orUF represents a group of cut and fill

nodes in G , denoted by V (p), whose definition will be given shortly.

Importantly, each cut or fill node will be represented by at least one

node inUC and one node inUF . Intuitively, selecting a node p inUF
(resp.UC ) corresponds to labelling all cut and fill nodes in V (p) as 1
(resp. 0) inG . This allows a subgraph S of H to encode a labelling of

G , as long as each cut or fill node inG is represented by exactly one

non-terminal node in S . We connectUF ,UC and the terminal nodes

UK ,UN following the connectivity in G. Specifically, each node p
of UF (resp. UC ) is connected with a terminal q of UK (resp. UN )

if any cut or fill node in V (p) is connected with the kernel (resp.

neighborhood) node represented by q.
While not every subgraph of H encodes a labelling of G, we

certainly hope that the NWST does. To do so, we first add a new set

of terminal nodes, denoted asUCF , one for each cut or fill node ofG .
A terminal representing a cut or fill node s is connected to all nodes
ofUF andUC that also represent s . This ensures that, in a subgraph

of H that connects all terminal nodes (e.g., the NWST), each cut or

fill node ofG must be represented by at least one non-terminal node.

Next, we assign each node of UC ,UF a large weight to penalize a

cut or fill node being represented by more than one non-terminal

nodes. Specifically, the weight ω at each node p ∈ UF (resp. ∈ UC )
is the cost of labelling all nodes of V (p) as 1 (resp. 0) plus a large
constant:

ω(p) =
∑

s ∈V (p)

(h(s, δp ) + D) (9)

where h is the labelling cost defined earlier (Equation 6), δp = 1 for

p ∈ UF and 0 for p ∈ UC , and D satisfies:

D >
∑

s ∈VC∪VF

| |h(s, 0) − h(s, 1)| | − min

s ∈VC∪VF ,δ=0,1
h(s, δ ). (10)

As we shall prove later, this lower bound of D gaurantees that the

NWST of H contains exactly one non-terminal node representing

each cut or fill node of G (unless the solution of ACAP-TL does not

exist).

To further ensure that the NWST of H encodes a proper labelling
of G, we define the nodes of UC ,UF as follows. We call a set of cut

and fill nodes of G fillable (resp. cuttable) if the set is connected

and, for any fill (resp. cut) node in the set, all of its connected cut

(resp. fill) nodes are included in the set as well. Observe that, given

a collection of mutually disjoint cuttable and fillable sets whose

union covers all cut and fill nodes, the labelling that assigns 1 to the

fillable sets and 0 to the cuttable sets is always proper. Based on this

observation, we create one node inUF (resp.UC ) representing each

fillable (resp. cuttable) set of G.
We now formalize the equivalence between ACAP-TL on G and

NWST on H . Given a subgraph S of H , we denote its non-terminal

node set as US . We say that S is CF-Disjoint if V (p) ∩V (q) = ∅ for
any pair of nodes p ∈ UC ∩US and q ∈ UF ∩US . That is,US cannot

contain a node fromUC and a node fromUF that represent the same

cut or fill node of G. We show that:

Proposition 6.2. Let S be a solution of NWST on H ,

Fig. 8. The graphH (b) constructed for the NWST problem from the original
graph G (a). Each node of H is annotated by the corresponding nodes in
G , and terminal nodes are shaded green. The highlighted subgraph of H
(green nodes and edges) encodes the labelling of G .

(1) If S is CF-Disjoint, then the following labelling onG is a solution
to ACAP-TL: a cut or fill node s is labelled 1 (resp. 0) if s ∈ V (p)
for some p ∈ UF ∩US (resp. p ∈ UC ∩US ).

(2) If S is not CF-Disjoint, then a solution of ACAP-TL on G does
not exist.

We prove the proposition in Appendix B. As an example, the

labelling in Figure 8 (a) (same as the optimal labelling in Figure

6 (c)) can be obtained from the subgraph in (b) (highlighted in

green), which connects all terminals and is CF-Disjoint. With this

proposition, we can solve the ACAP-TL problem onG by solving the

NWST problem on H and checking the result for CF-Disjointness.

6.3 Algorithm
The previous section presented a globally optimal strategy to solve

ACAP-TL. To solve the original TL problem, we need to address two

issues stemming from the NWST-based approach and the differences

between ACAP-TL and TL as mentioned earlier. First, the subgraph

produced by the NWST solver may not be CF-Disjoint. This may

happen either because a solution to ACAP-TL does not exist, or

because the NWST solver failed to solve to optimality. Second, since

the energy of ACAP-TL is different from that of TL, a labelling that

minimizes the former may not be minimal for the latter.

To address the first issue, we propose several greedy heuristics to

modify the graph G to improve the odds of solving ACAP-TL. As

discussed in the previous section, an ACAP labelling does not exist

if there is a double-articulation node (e.g., f1 in Figure 7 (b)). Once

detected, a double-articulation node s is resolved by “sending” it to

the kernel (or neighborhood); that is, s is labelled 1 (or 0) and merged

with its connected kernel (or neighborhood) nodes (see Figure 7

(c)). The choice of kernel or neighborhood is made to result in a

greater decrease in the energy EG . If multiple double-articulation

nodes are found, the one that would result in the greatest decrease

in energy is chosen to be resolved. After resolving one node, we

check the graph again for new double-articulation nodes, and the

process repeats until no more such nodes are found.

Evenwith all double articulation nodes resolved, the NWST solver

may still return a subgraph S of H that is not CF-Disjoint. In this

case, we need to further modify the graph G to make ACAP-TL
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TopologyLabelling (G)
Repeat:

Resolve all double-articulation nodes from G
Construct H from G
S ← Solve NWST on H
If S is CF-Disjoint

Break

Else

Resolve a doubly-labelled node from G
L← Labelling obtained from S
Improve L by greedy strategy

Return L

Fig. 9. Pseudo-code of the labelling algorithm.

easier to solve. Since S is not CF-disjoint, there exists some cut or fill

node s of G that is represented by a node in UF ∪US and a node in

UC ∪US . We call s a doubly-labelled node. We solve a doubly-labelled

node in the same way that we resolve a double-articulation node

- by picking the doubly-labelled node that results in the greatest

decrease in EG and sending it to the neighborhood or kernel. Once

a doubly-labelled node is resolved, we check and resolve double-

articulation nodes again (since the graph is changed), and solve for

ACAP-TL. The process is repeated until a CF-disjoint subgraph of

H is found.

To alleviate the second issue (that the energies of ACAP-TL and

TL are different), we take the solution of ACAP-TL as the initial

labelling and apply the greedy strategy mentioned in Section 6.1

to further reduce the TL energy. In our tests, however, we have

found that the greedy strategy rarely improves upon the labelling

produced by ACAP-TL, but we include this step nevertheless for the

occasional improvement.

The complete algorithm is summarized in the pseudo-code in

Figure 9. Note that the iterative graph modification is guaranteed to

terminate, because each iteration sends at least one doubly-labelled

node to the neighborhood or kernel, and hence the number of cut

and fill nodes to be labelled is monotonically decreasing.

6.4 Improving scalability
The optimality of our algorithm largely depends on the optimal-

ity of the NWST solver. Since the NWST problem is NP-hard, the

chance of a solver finding an optimal (or close-to-optimal) solution

decreases with the graph size. We describe two strategies to reduce

the graph size, which improves both the efficiency and optimality

of our algorithm on large graphs.

Cluster simplification. The first strategy is to solve the labelling

problem on smaller subgraphs whenever possible, before solving

it on the entire graph. Consider a maximal set of connected cut

and fill nodesW , which we call a cluster. There are two types of

clusters that can be simplified before solving ACAP-TL onG . IfW is

connected to only neighborhood (resp. kernel) nodes, then all nodes

inW must be labelled 0 (resp. 1) for the labelling to be ACAP. In

this case, we simply send the entire setW to the neighborhood or

kernel, as we did for double-articulation and doubly-labelled nodes.

Another interesting scenario is whenW is connected to exactly

one kernel node k and one neighborhood node n. It is easy to show

that, if labelling L is a solution of ACAP-TL on the whole graph

G, then the restriction of L to the subgraph S spanning nodesW ∪
{k,n} is a solution of ACAP-TL on S . We therefore apply the same

iterative solver (without the final greedy step) to S , and afterwards

send the 1-labelled (resp. 0-labelled) nodes ofW to the kernel (resp.

neighborhood). If enabled, this cluster-simplification step takes place

at the beginning of each iteration in our solver (right after the line

“Repeat” in the pseudocode of Figure 9). Note that processing of

different clusters are independent of each other, and hence they can

be trivially parallelized.

Node pruning. While cluster simplification does not affect the

optimality of our algorithm, we propose another strategy that trades

theoretical optimality for practical optimality and efficiency. We

have observed that the bulk of the transformed graph H consists of

nodesUC ,UF (representing all cuttable and fillable sets) and their

incident edges. In Appendix C, we show that solving NWST with

a reduced set of UC ,UF still leads to a proper and ACAP labelling

of G. Even though such labelling may not minimize the ACAP-TL

energy, the reduced graph size could make the NWST solver more

successful in finding a close-to-optimal solution in practice. We

have found the following pruning scheme to be quite effective in

our experiments. We measure the hops between two fill (resp. cut)

nodes s, t as the least number of cut (resp. fill) nodes on any path

from s to t in G. We keep a node p ∈ UF (resp. p ∈ UC ) only if the

maximum hops between two fill (resp. cut) nodes inV (p) is no more

than K , a user-specified number.

7 RESULTS
We evaluate our algorithm on cuts and fills produced by exist-

ing monotonic simplification methods. In particular, we consider

morphological opening/closing [Nooruddin and Turk 2003] and

topology-controlled inflation/deflation [Bischoff and Kobbelt 2002;

Kriegeskorte and Goebel 2001; Szymczak and Vanderhyde 2003].

These methods are simple to implement and capable of removing

all types of topological features. Note that these methods all operate

on a voxel grid, which is a cell complex with hexahedral cells (i.e.,

voxels). In the following, we shall refer to a cut or fill cell as a cut
or fill voxel. We compare our method to the TopoMender method

[Zhou et al. 2007], a monotonic simplification method that removes

topological handles using a minimum spanning tree; the MendIT

method [Ju et al. 2007], which is, to the best of our knowledge, the

only non-monotonic method capable of removing all three types of

topological features; and the greedy strategy in Section 6.1 without

the full algorithm in Section 6.3.

We solve the NWST problem using the recent branch-and-bound

algorithm of [Leitner et al. 2018], which performed well on public

benchmarks (e.g., the 11th DIMACS Challenge [DIM 2014]) as well

as on our own data. A nice feature of the implementation is that

it allows the user to set a maximum running time, which is useful

when the problem size is large. We found that the solver typically

returns an optimal solution within seconds for small or medium-

sized graphs (e.g., containing up to thousands of nodes). For larger
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A

B

1/2/0 1/0/0 (cut)
1/0/0 (ϔill)
756 (cut)
6591 (ϔill)

1/0/0
397

(a) Input shape (b) Cut and fill voxels (c) Selected voxels (d) Final shape (e) TopoMender 
(small ftr. size)

(f) TopoMender 
(large ftr. size)

Fig. 10. (a): The Hip model with two handles (marked A and B). (b): Cut voxels (red) and fill voxels (blue) produced by topology-controlled inflation and
deflation. (c): Selected fill voxels (filling in the small handle hole of A) and cut voxels (cutting open the narrow part of the handle body of B). (d): The modified
shape. (e,f): Results of TopoMender using a small parameter (e), which leaves the handle B in the shape, or using a large parameter (f), which cuts open the
wide handle body of A. (β : number of connected components, handles, and cavities; д: geometric cost)

graphs, the optimality of the solution often does not improve after

a few seconds. As a result, we set the time limit to be 8 seconds

regardless of graph size. Unless stated otherwise, we apply the basic

algorithm described in Section 6.3 without employing the optional

heuristics described in Section 6.4.

7.1 Distance-based cuts and fills
We first consider the cuts and fills produced by inflating or deflat-

ing an initial seed towards the shape [Bischoff and Kobbelt 2002;

Kriegeskorte and Goebel 2001; Szymczak and Vanderhyde 2003].

Starting with all voxels in a bounding box as the seed, this approach

iteratively removes voxels that lie outside the shape while prevent-

ing topological changes. The removal is prioritized by the Euclidean

distance function from the shape’s boundary, so that voxels further

away from the shape are removed before those closer to the shape.

The deflation results in a minimal set of fill voxels whose addition to

the shape removes all topological features. Cut voxels can be created

by the reverse process, inflating from a seed inside the shape (we

use the voxel that is furthest away from the shape’s boundary). Each

cut or fill voxel v is assigned a constant cost, i.e., д(v) = 1.

Figure 10 shows a simple example (the Hip). The shape in (a)

has two handles, one with a small handle hole and a wide handle

body (A), and another with an expansive handle hole and a nar-

rower handle body (B). As shown in (b), removing all cuts would

make a long opening in the handle body of A, while adding all fills

would create a large patch in the handle hole of B. Our method

picks a subset of both cut and fill voxels to take the less invasive

operation for each handle, leading to a lower geometric cost as

shown in (c,d). We also show the results, in (e,f), of the monotonic

method TopoMender. TopoMender takes in a user-given feature size

parameter, and cuts (resp. fills) all handles whose handle body (resp.

handle hole) has a smaller radius than the parameter. To perform

both cutting and filling, we ran TopoMender twice, first cutting all

small handle bodies and next filling all small handle holes. However,

it can be challenging to choose the right feature size to get desir-

able results: a too-small parameter leaves the handle B in the shape,

while a too-large parameter tears open the wide handle body of A.

1/18/0 1/0/0 (cut)
1/0/0 (ϔill)
7360 (cut)
8648 (ϔill)

1/0/0
2634

1/0/0
5523

(a) Input shape (b) Cut and fill voxels

(c) Selected voxels (ours) (d) Final shape (ours)

(e) Selected voxels (greedy) (f) Final shape (greedy)

Fig. 11. (a): The Tree shape with 18 handles. (b): Input cut (red) and fill (blue)
voxels. (c): Cut and fill voxels selected by our algorithm. (d): The modified
shape. (e): Cut and fill voxels selected by the greedy strategy, which include
a large group of fill voxels. (f): Resulting shape of the greedy strategy.

In contrast, our algorithm automatically picks the least costly way

to remove each feature.
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(a) Input

A

B

(b) MendIT

C

D

(c) Ours

Fig. 12. Comparing result of our method (c) and MendIT (b) on a region
of the Tree with two handles (a). While MendIT fills a handle hole (A) and
makes a long cut (B) on the handle body, our method makes two short cuts
(C,D) without filling the handle hole.

A

B

C
(a) Input shape

151/9/0

(b) Ours

1/0/0
317

A

(c) Greedy

4/0/0
662

B

C
(d) MendIT

1/0/0

Fig. 13. Comparing the result of our algorithm (b), the greedy labelling
strategy (c), and MendIT (d) on the Vessel example from Figure 1. To reduce
the number of components, our method removes small and distant islands
(box A) while connecting to larger ones (box B and C). The other (greedy)
methods either fails to remove all components in the result (c) or misses
non-trivial components (d).

Figure 11 shows a more complex example (the Tree). The input

shape in (a) contains 18 handles. Either removing all cuts or adding

all fills would remove all handles, but at the cost of significant

geometric changes, as evident in (b). Our algorithm selects a small

subset of cut and fill voxels to achieve the same topological goal

but with a much lower geometric cost, as shown in (c,d). As a

comparison, running the greedy strategy of Section 6.1 alone also

removes all handles, but at a higher geometric cost, as shown in

(e,f). The close-up view examines a region where our full algorithm

based on global optimization differs with the greedy strategy. The

greedy strategy selected a large group of fill voxels, which fills in

two handles at once and thus was prioritized for labelling, despite

its large geometric cost. In contrast, our algorithm selected two

smaller groups of cut voxels that remove the same handles at a lower

cost. To further demonstrate the advantage of global optimization,

Figure 12 examines our method on a different region of the Tree

and compares with the greedy method of MendIT. MendIT starts by

A

B
C

2/215/13

(a) Input

1/0/0
902

(b) Ours

1/4/0
2738

(c) Greedy

1/0/0

(d) MendIT

Fig. 14. Comparing the result of our algorithm (b), the greedy labelling
strategy (c), and MendIT (d) on the Heart example. Both our method and
MendIT fully simplify the topology, while the greedy strategy leaves 4
handles in the shape. The inserts show a region where both the greedy
strategy and MendIT make excessive geometric changes.

filling the handle hole (A), which has a low geometric cost. However,

filling that hole creates a thick handle body that has to be removed

by a long cut (B), which un-does the earlier filling. Our algorithm

removes the same number of handles with two short cuts (C,D) and

no fills.

The Vessel in Figure 1 contains multiple connected components

and handles. Once again, while performing only cutting or only

filling results in excessive geometric changes (highlighted in the

boxes A,B,C), our algorithm selects a geometrically minimal set

of cut and fill voxels to achieve the same amount of topological

reduction. Figure 13 compares our method with the greedy strategy

of Section 6.1 and MendIT on the same example. Due to their greedy

nature, these two methods can make globally sub-optimal choices.

The greedy strategy left a few islands in the result (box A in (c)),

while MendIT removed a few non-trivial components from the input

(boxes B,C in (d)), similar to the scenario illustrated in Figure 3.

The Heart in Figure 14 is an even more complex example with

multiple connected components, handles, and cavities. Observe that

our method is able to fully simplify the topology, while the greedy

strategy leaves a few handles behind and incurs a larger geometric

cost. The inserts compare our method with the greedy strategy

and MendIT in a region where two large handle holes (A,B) are

separated by a narrow handle body (C). Both greedy approaches

choose to first cut the handle body C, as it has a low geometric cost.

However, the cut merges the two handles holes A and B into an even

larger handle hole. This forces the two methods to subsequently

make several large cuts (indicated by arrows) to avoid filling the
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(a) Cutting onlyInner seed

1/0/0
32309

(b) Filling only
Outer seed

19/6/0
22605

(c) Ours

1/0/0
14813

(d) Ours
(w/o intensity)

Fig. 15. The shape after subtracting intensity-aware cut voxels (a) or adding
intensity-aware fill voxels (b), and after running our algorithm with the
intensity-aware cuts and fills (c) or distance-based cuts and fills (d). The
inserts in (a,b) show the inner and outer seeds used for inflation and de-
flation. The inserts in (c,d) examine a region where the same handle is
removed differently in the two results, either separating the two vessels (c)
or breaking a vessel in the middle (d).

merged handle hole. Thanks to the global optimization approach,

our algorithm avoids making these large cuts by filling the handle

holes A and B without cutting the handle body C.

7.2 Intensity-aware cuts and fills
A 3D shape is often represented as the iso-surface of an intensity

function, such as a signed distance function reconstructed from

point clouds or a 3D MRI or CT scan. When the intensity function is

available, it can be used to guide the inflation and deflation process

to create intensity-aware cuts and fills [Bischoff and Kobbelt 2002].

Basically, the Euclidean distance field is replaced by the intensity

function to prioritize voxels during inflation or deflation process.

That is, voxels whose intensity values are further from the iso-value

of the shape are removed earlier than voxels whose intensity values

are closer to the iso-value. Accordingly, we assign a non-uniform

geometric cost to a cut or fill voxel as the magnitude of the intensity

gradient. This cost penalizes using voxels on strong intensity edges.

The cost reduces to a constant when the intensity function is the

Euclidean distance field, making our choice consistent with the

earlier scenario when the intensity function is not available.

We make two more changes to the inflation and deflation process

to make it more practical. First, since the intensity values are often

only available (or reliable) within a certain range, using a bounding

box or an interior voxel as the seedmay not work if the seed contains

voxels whose values are outside that range. Instead, for a user-

specified intensity range [Ilow , Ihiдh ], and assuming the interior of

shape has higher intensity than the iso-value, we define an intensity-

based seed as the set of all voxels whose values are above Ilow

(for deflation) or Ihiдh (for inflation). Second, unlike the bounding

box or a single voxel, the intensity-based seed may have a complex

topology. To create cut or fill voxels that simplify, and not complicate,

topology, we modify the inflation and deflation routine to allow

any topological changes that reduces the number of components,

handles or cavities.

We first apply the intensity-based inflation and deflation to the

Vessel shape from Figure 1. This shape was originally obtained as an

iso-surface of a 3D CT scan, which we use as the intensity function.

As shown in Figure 15 (c,d), compared with distance-based cut and

fill voxels, the use of intensity-aware cuts and fills allows ourmethod

to make a “nicer” cut that separates two close-by vessels instead of

breaking a vessel in the middle. Note that the intensity-based outer

seed has a significant amount of topological noise. As a result, the

fill voxels alone do not fully simplify the topology. By utilizing both

cut and fill voxels, our algorithm achieves full reduction of topology

at a lower geometric cost than performing either cutting or filling.

We next perform intensity-aware cutting and filling on two large

examples (the Panicle and the Root) in Figures 16,17. Both shapes

are obtained as iso-surfaces of CT scans, and contain thousands of

topological features including handles, islands, and cavities. Due

to the topological noise present in the seeds used for inflation and

deflation, neither the set of cut voxels nor the set of fill voxels can

simplify the topology effectively by themselves, and hundreds of

topological features still remain after performing only cutting or

only filling (a few are highlighted in the inserts). By combining both

sets of voxels, our method achieves significantly more reduction

in topology than either cutting or filling. Figure 18 zooms in on a

complex region of the root that has handles, cavities and islands,

which results in a cluster of cut and fill voxels. Our method selects

both cut and fill voxels to remove these features.

In both of these examples, the initial graphG contains thousands

of nodes and edges, and the transformed graph for NWST, H , is too

large to hold in memory. As a result, we use the strategies discussed

in Section 6.4 to reduce the graph size. Table 1 examines the effect of

cluster simplification and node pruning (with different parameterK )
on the size of H , the overall running time, and the resulting energy

(both topology and geometry) using the Root example. Observe

that cluster simplification is particularly effective in reducing the

graph size, which leads to both significantly faster runtime and more

Cluster? K |U |/|A| Time (sec) β0/β1/β2 д

Yes 1 745/29990 35.1 32/6/0 38637

Yes 2 1089/32841 39.8 32/6/0 38692

Yes 3 5586/49596 52.8 32/9/0 38431

Yes 4 45130/420373 126.0 32/13/0 41242

No 1 24791/258512 23573.3 32/11/0 51343

No 2 31261/302879 30748.4 32/13/0 47192

No 3 54604/499427 31200.6 32/11/0 47836

Table 1. Effect of using clustering simplification (first column) and choices
of K for node pruning (second column) on the number of nodes and edges
of H (taken as the maximum size among all clusters and over all iterations
of the algorithm), overall runtime of our algorithm, and the Betti numbers
and the geometric cost of the solution.
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A

B

1749/871/1 554/31/0
109207

29/153/0
173372

24/26/0
124880

(a) Input shape (b) Cutting only (c) Filling only (d) Ours

Fig. 16. (a): An iso-surface from a CT scan of a sorghum panicle. (b,c): Results of intensity-aware cutting and filling (cut/fill voxels shown on the left). (d): Our
result. Box A highlights a few islands that are only connected by filling, and box B highlights two handles that are only removed by cutting. Our method
resolves both features.

1951 /
2117/
158

A B

111/
25/
0
56841

123/
49/
11
59056

32/
6/
0
38637

(a) Input shape (b) Cutting only (c) Filling only (d) Ours

Fig. 17. (a): A highly complex iso-surface from a CT scan of a corn root. (b,c): Results of intensity-aware cutting and filling. (d): Our result. Box A highlights a
handle that is only removed by cutting (which separates the two root branches), and box B highlights islands that are only connected by filling. Our method
resolves both features.

Input Ours

(a) Cut and fill voxels (b) Selected voxels

Fig. 18. Cut and fill voxels (a) and those selected by our algorithm (b) on
the Root. The inserts highlight a cluster of cut and fill voxels in a region
with complex topology.

optimal solutions by the NWST solver. While larger K should lead

to improved optimality in theory (by pruning fewer nodes of H ), it

also results in larger graph sizes and hence deteriorating solutions.

The results shown in Figures 16,17 are produced with K = 1.

7.3 Cuts and fills from opening and closing
Morphological opening and closing are common ways to reduce

topological noise on a voxelized shape T . Given a structure element

B (e.g., a box or voxelized ball), opening computes the largest union

of B that can fit inside T , and closing computes the complement of

the largest union of B that can fit outsideT . An example is shown for

another Heart example in Figure 19. Observe that the small handle

on the shape shown in the insert of (a) is removed by either opening

(b) or closing (c).

There are several limitations of opening and closing. First, they

may introduce new topological features that are not present on

the original shape. For example, opening may create new islands

(e.g., box A in (b)) while closing may merge different shape parts

to form new handles (e.g., box B in (c)). Second, both operators

make expansive modification of the shape, most of which do not

contribute to reduction in topology (as seen from the cut and fill

voxels at the top of (b,c)). Lastly, both operations are monotonic,

since opening only cuts while closing only fills.
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(a) Input shape

4/69/8

A
(b) Opening

B

(c) Closing (d) Ours

6/17/3
6845

3/12/0
16210

1/7/0
2965

Fig. 19. (a): A heart segmentation. (b): Result of opening (bottom), which contains several new islands (box A), and the corresponding cut voxels (top). (c):
Result of closing (bottom), which merges nearby vessels (box B) and thereby creating new handles, and the corresponding fill voxels (top). (d): Voxels selected
by our algorithm (top) and the modified shape (bottom). The insert examines a handle that is removed in all three methods.

These limitations can be addressed by running our algorithm

on the results of both opening and closing. We take the difference

between the shape and its opening (resp. closing) as the cut (resp.

fill) voxels, and assign each voxel a unit geometric cost. Since the

majority of the changesmade by opening or closing are not topology-

related, and to reduce graph size, we pre-process the graph G to

send a cut (resp. fill) node s to the kernel (resp. neighborhood) if

χ (Ωs ) = 0 and if labelling s as 0 (resp. 1) does not change the num-

ber of connected components of either the 0-labelled or 1-labelled

subgraph. As shown in Figure 19 (d), our algorithm removes more

topological features and incurs a lower geometric cost than either

opening or closing.

7.4 Performance
We report detailed statistics of all examples in this paper in Table 2.

These include the graph sizes (G and H ), running time, and the ob-

jective energy (both topology and geometry) of the results produced

by our algorithm and other variants. All experiments are performed

on a Windows PC with 3.47Hz CPU and 24G RAM.

Wemake several notes about the table. First, we did not report the

energy of our method before applying the greedy improvement step

(second-to-last line in Figure 9), because that step did not improve

the overall energy for any of the examples in this table. The only

experiments that we noticed some improvement was when the

graph size is so large that NWST returns a highly sub-optimal

solution (e.g., when cluster simplification is turned off on the Root or

Panicle). Second, observe that our NWST-based labelling algorithm

almost always outperforms the greedy strategy. The difference in

the topological complexity between these two strategies becomes

significant for large graphs, which shows the importance of a global

optimization approach for the labelling problem.

Lastly, although we do not know the optimal energy for the la-

belling problem, we can provide a lower bound on the Betti numbers

as the persistent Betti numbers of the inclusion map Ω(T \ C) →

Ω(T ∪ F ). These numbers describe the least possible number of

topological features for any shape sandwiched between Ω(T \C)
(cutting only) and Ω(T ∪ F ) (filling only). Note that, in 3D, a shape

realizing the persistent Betti numbers may not exist, and finding

the sandwiched shape with the simplest topology is an NP-hard

problem (homological simplification) [Attali et al. 2015]. Neverthe-

less, these numbers offer a theoretical lower bound of how much

topology we can simplify. We compute the persistent Betti numbers

using the DIPHA software [Bauer et al. 2014], which conveniently

handles cubical complexes. Observe from the table that our algo-

rithm realizes this lower bound on simple examples while getting

close to it on large examples. In particular, we are 20 features away

from the lower bound on the Panicle, and only 3 handles away from

the lower bound on the Root example, which initially contains over

4000 topological features.

8 DISCUSSION
We presented an algorithm for maximally reducing topological com-

plexity of a 3D shape while minimizing geometric changes by select-

ing from a given set of cuts and fills. To the best of our knowledge,

this is the first attempt at solving topological simplification in its full

generality (treating all types of topological features and allowing

both cutting and filling) as a global optimization problem.

A key limitation of our work is that the choice of the input set

of cuts and fills can have a major impact on how the solution of

our graph labelling problem, formulated in Section 5, approximates

the solution to the cell selection problem, stated in Section 4. Since

graph labelling operates at the level of R-connected components

of cells, the granularity of such components directly affects the

solution space. In particular, the labelling algorithm would return

a poor approximation if adding (resp. subtracting) an R-connected

component of fill (resp. cut) cells simultaneously removes some

topological features and introduce new ones. We have observed
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Example β0/β1/β2 β0/β1/β2 β0/β1/β2;д β0/β1/β2;д β0/β1/β2;д β0/β1/β2;д |V |/ |E | |U |/ |A | Time

(shape) (persistent) (cutting) (filling) (greedy) (ours) (sec)

Figure 10 1/2/0 1/0/0 1/0/0; 756 1/0/0; 6591 1/0/0; 397 1/0/0; 397 5/7 12/16 3.1

Figure 11 1/18/0 1/0/0 1/0/0; 7360 1/0/0; 8648 1/0/0; 5523 1/0/0; 2634 37/94 138/390 3.8

Figure 19 4/69/8 1/0/0 6/17/3; 6845 3/12/0; 16210 2/10/1; 12198 1/7/0; 2965 46/104 147/262 0.01

Figure 1 151/9/0 1/0/0 1/0/0; 866 1/0/0; 1534 4/0/0; 662 1/0/0; 317 202/413 4556/53188 24.3

Figure 15 151/9/0 1/0/0 1/0/0; 31309 19/6/0; 22605 6/0/0; 30735 1/0/0; 14813 207/413 3202/42404 45.4

Figure 14* 2/215/13 1/0/0 1/0/0; 3070 1/0/0; 3264 1/4/0; 2738 1/0/0; 902 376/1076 753/29680 3.1

Figure 16* 1749/871/1 20/10/0 554/31/0; 109207 29/153/0; 173372 97/25/0; 118948 24/26/0; 124880 3341/7391 169/585 5.5

Figure 17* 1951/2117/158 32/3/0 111/25/0; 56842 123/49/11; 59056 116/169/1; 47341 32/6/0; 38637 6070/14881 745/29990 35.1

Table 2. Statistics for all examples in the paper (ordered by topological complexity): Betti numbers of the shape; persistent Betti numbers of the inclusion map
from the all-cut shape to the all-filled shape; Betti numbers and geometric cost for cutting only, filling only, greedy labelling, and our method; number of nodes
and edges of G and H ; and running time. The * indicates the use of cluster simplification and node pruning (with K = 1).

many such components in the cuts and fills generated by morpho-

logical opening and closing, where our algorithm produced a less

simplified result (see Table 2). We would like to explore ways to

segment cells (voxels) at a finer level than R-connectivity, while still

being able to formulate a graph labelling problem that is amenable

for optimization.

While our current implementation is specialized to hexahedral

cell complexes in the form of a voxel grid, our algorithm applies to

any cell complexes. In the future, we plan to develop implementa-

tions for general cell complexes in 3D, such as tetrahedral meshes.

We would also like to explore extension of the algorithm to allow

for more user control. For example, prescribing Betti numbers (e.g.,

a single connected component with k handles) would be useful for

shapes that have a known topological structure. Finally, an orthog-

onal direction of investigation is how to obtain better geometric

costs for cuts and fills to better capture the semantics of the shape

and produce more natural-looking shape modifications.
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A PROOF OF PROPOSITION 5.2
We start by associating a set of cells (at all dimensions) to each node

and showing some properties of these sets. Define Ωs as the subset

of cells in the closure Ω(Os ) that are not faces of any 3-cell ranking

higher than Os . Note that Os ⊆ Ωs ⊆ Ω(Os ) by definition. Recall

that two sets of cells are connected if some cell in one set is the face

of a cell in the other set. We can show that,

Lemma A.1. The following properties hold:
(1) For any cell c ∈ Ω, there exists a unique node s ∈ V such

that c ∈ Ωs . That is, Ωs of all nodes s ∈ V form a disjoint
decomposition of Ω.

(2) For any node s ∈ V , Ωs is connected.
(3) For any two nodes s, t ∈ V , they are connected by an edge if

and only if Ωs and Ωt are connected.

Proof. We prove each property in turn.

(1) Consider the set H of highest-ranking 3-cells that c is a face
of. If H contains more than one 3-cell, then all 3-cells in H
are R-connected, because c is not a face of any other higher-

ranking 3-cells. Hence all 3-cells in H belong to the same

R-connected component Os for some node s ∈ V .

(2) Since Os ⊆ Ωs and the remaining cells Ωs \Os are faces of

(and hence connected to) some 3-cell in Os , we only need to

show that any two 3-cells in Os are connected via a path of

cells in Ωs . Since any two 3-cells in Os are connected via a

path of R-connected 3-cells, we only need to show that two

R-connected 3-cells u,v ∈ Os share a common face that is

in Ωs . By R-connectivity, u,v share a common face c that is
not the face of any 3-cell with rank higher than that of u,v .
Hence c ∈ Ωs , and the property holds.

(3) If s, t are connected, then there exists 3-cells u ∈ Os and

v ∈ Ot such that they share a common face c that is not a face
of another 3-cell ranking higher than u or v . Hence c belongs
to either Ωs or Ωt , implying that Ωs and Ωt are connected.

Conversely, if Ωs and Ωt are connected, and without loss of

generality, there exists a cell c ∈ Ωs that is a face of a 3-cell

v ∈ Ot . Let u be the 3-cell in Os that c is a face of. Since

c ∈ Ωs , there is no other 3-cell with rank higher than u that

has c as a face. Hence u,v are R-connected, and hence nodes

s, t are connected by a graph edge.

�

We now prove Proposition 5.2:

Proof. (Proposition 5.2) We first show that the following state-

ment is true for any proper labelling L: if two nodes s, t ∈ V are

connected such that s has a higher rank than t , and if L(t) = 1, then

L(s) = 1. Note that s can be either a kernel node or cut node. If s is
a kernel node, then L(s) = 1 regardless of L. If s is a cut node, then t
can only be a fill node, and therefore L(s) = 1 since L is proper.

To prove the Proposition, it suffices to show that the union of Ωs
over all 1-labelled nodes s is the modified shape X , or:

∪L(s)=1 Ωs = Ω(∪L(s)=1Os ) (11)

for any proper labelling L. If this is true, then the three properties

in Lemma A.1 ensure that the connected components of X , and of

its complement Ω \ X , have one-to-one correspondence with the

connected components of the 1-labelled and 0-labelled subgraphs.

To show that equality 11 holds, we need to show that for any

node s ∈ V such that L(s) = 1, and any 3-cell u ∈ Os , all faces of u
(at all dimensions) must have been included in the union ∪L(s)=1Ωs .

We consider two cases for each face c of u. If c ∈ Ωs , then obviously

c ∈ ∪L(s)=1Ωs . Otherwise, by Lemma A.1, there exists some other

node t ∈ V such that c ∈ Ωt , t has higher rank than s , and s, t are
connected. As shown at the beginning of this proof, we conclude

that L(t) = 1, and hence c ∈ ∪L(s)=1Ωs . �

B PROOF OF PROPOSITION 6.2
We start with a few lemmas before proving the main proposition.

In the following discussion, we consider a graph H = {U ,A,R,ω}
as defined in Section 6.2. For any node p ∈ U \ {π }, we denote the
node(s) in V that p represents by V (p). For a set of nodes P ⊆ U ,

V (P) = ∪p∈PV (p). Conversely, we denote by U (s) the node in U
representing a node s ∈ V , whenever U (s) exists and is unique.

Given a subgraph S of H , we denote its non-terminal node set by

US and the total weights ofUS as ω(S). We also denote the union of

all cut and fill nodes in V as VCF .
A subgraph S of H is called C-Disjoint (resp. F-Disjoint) if for

any two nodes p,q in UC ∩ US (resp. UF ∩ US ), V (p) ∩ V (q) = ∅.
The following Lemma shows that any solution to NWST is both

C-Disjoint and F-Disjoint:

Lemma B.1. If S is a connected subgraph of H that spans R such
that ω(S) is minimized, then S is both C-Disjoint and F-Disjoint.

Proof. By symmetry, we only need to show that S is C-Disjoint.

Suppose, to the contrary, that S is not, and there exist p,q ∈ UC
such that V (p) ∩V (q) , ∅. By definition of cuttable sets, the union

of two cuttable sets is also cuttable. Therefore there exists some

node r ∈ UC such that V (r ) = V (p) ∪V (q). Furthermore,

ω(p) + ω(q) − ω(r )
=
∑
s ∈V (p)(h(s, 0) + D) +

∑
s ∈V (q)(h(s, 0) + D) −

∑
s ∈V (r )(h(s, 0) + D)

=
∑
s ∈V (p)∩V (q)(h(s, 0) + D)

(12)

On the other hand, by definition of D (Equation 10), the following

holds for any node t ∈ V and η ∈ {0, 1}:

h(t,η) + D > h(t,η) − min

s ∈VCF ,δ=0,1
h(s, δ ) ≥ 0 (13)

We conclude from Equations 12,13 that ω(p) + ω(q) > ω(r ). By
construction of graph edges A, any node inU connected to either

p or q is also connected to r . We create another subgraph, S ′, by
replacing p,q in S with r (if it is not already in S). The arguments

above show that S ′ is connected and spanning R, and ω(S ′) < ω(S),
which contradicts the assumption that S is minimal. �

The next lemma shows that if a C-, F-, and CF-Disjoint subgraph

exists in H , then the solution to NWST on H has to be CF-Disjoint.

Lemma B.2. If there is a connected subgraph of H that spans R and
is C-Disjoint, F-Disjoint, and CF-Disjoint, then any minimum-weight,
R-spanning, connected subgraph of H must be CF-Disjoint.
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Proof. We first show that a connected, R-spanning, C-, F-, and
CF-Disjoint subgraph S of H corresponds to a labelling ofV . Since S
is R-spanning and connected, every terminal node r ∈ UCF must be

connected to some node in p inUC ∩US orUF ∩US , implying that

V (r ) ∈ V (p). Hence the union of sets V (p) for all p ∈ US covers all

nodes inV . By C-, F-, and CF-Disjointness, no two sets in this union

overlap. As a result, for any node s ∈ VCF , its corresponding node
U (s) ∈ US exists and is unique. We define a labelling L such that s
is labelled as 0 (resp. 1) if U (s) is in UC (resp. UF ). We can therefore

express the weight of S as:

ω(S) =
∑

s ∈VCF

(h(s, L(s)) + D) (14)

Suppose, to the contrary, that there exists some connected, R-
spanning subgraph S ′ of H that has minimal weight, but S ′ is not
CF-Disjoint. By the same argument above for S , the union of sets

V (p) for all p ∈ US ′ still covers all nodes in V , but these sets are
no longer disjoint (since S ′ is not CF-Disjoint). In particular, there

exists some node s0 ∈ VCF , p0 ∈ UC ∩US ′ and q0 ∈ UF ∩US ′ such
that s0 ∈ V (p0) ∩V (q0). Consider a labelling L

′
of V such that each

node s is labelled as 0 (resp. 1) if there is some p ∈ UC ∩US ′ (resp.
p ∈ UF ∩US ′ ) such that s ∈ V (p). For nodes like s0, we will arbitrarily
pick a label. By inequality 13, we have:

ω(S ′) =
∑
p∈US′

∑
s ∈V (p)(h(s, δp ) + D)

≥
∑
s ∈VCF (h(s, L

′(s)) + D) + h(s0, 1 − L
′(s0)) + D

(15)

where δp is 0 (resp. 1) if p ∈ UC (resp. p ∈ UF ). The equality holds

if s0 is the only overlapping node among sets V (p) for all p ∈ US ′ .
Combining Equations 14,15, and by definition of D, we have:

ω(S ′) − ω(S)
≥
∑
s ∈VCF (h(s, L

′(s)) − h(s, L(s))) + h(s0, 1 − L
′(s0)) + D

≥ −
∑
s ∈VCF ∥h(s, 0) − h(s, 1)∥ +mint ∈VCF ,δ=0,1 h(t, δ ) + D

> 0

which contradicts the assumption that S ′ has minimal weight. �

The next two lemmas establish the relation between a solution

to the ACAP-TL problem and a connected, R-spanning subgraph of

H that is C-, F- and CF-Disjoint.

Lemma B.3. Let L be a proper and ACAP labelling onG . There is a
connected, R-spanning subgraph S of H that is C-Disjoint, F-Disjoint,
and CF-Disjoint. In addition, ω(S) = E∗G (L) + D ∗ |VCF |.

Proof. Let VL,0 (resp. VL,1) denote the set of 0-labelled (resp.

1-labelled) nodes of VCF under labelling L. Since L is proper, each

connected component of VL,0 (resp. VL,1) is cuttable (resp. fillable).
We define S to include all terminal nodes R, all p ∈ UC such that

V (p) is a connected component of VL,0, and all q ∈ UF such that

V (q) is a connected component ofVL,1. By this construction, all sets
V (p) for p ∈ US are disjoint, and hence S is C-, F-, and CF-Disjoint.

We next show that S is connected. First, by our construction of

US , the union of sets V (p) for all p ∈ US covers all nodes in V . As a

result, each terminal inUCF is connected to some node inUS . Next,
consider a group of terminals I ⊆ UN such that V (I ) is a reachable
set of neighborhood nodes in V . Since L is ACAP, V (I ) lies in a

connected component of GL,0, denoted by GI . LetUI be the set of
nodes in UC ∩US such that V (UI ) cover all the cut and fill nodes

of GI . Since p ∈ I is connected to q ∈ UI if and only if V (p) ∈ V (q),
and since each node of UI represents a connected component of

the remainder of GI after removing nodes V (I ), we conclude that
terminal nodes I and nodes UI are connected. Similarly, let J ⊆ UK
be a group of terminals such that V (J ) is a reachable set of kernel
nodes in V , this group is connected to nodes UJ in UF ∩US such

that V (UJ ) cover all the cut and fill nodes of G J , the connected

component of GL,1 containing V (J ). Furthermore, by definition of

ACAP, each connected component of GL,0 or GG ,1 must contain

some neighborhood or kernel nodes, and hence any node of US
must belong to UI or UJ for some group I or J . That is, every node

ofUS lies in some connected subgraph of S containing a group of

terminals of UN orUK that represents a reachable set in V . Lastly,
since each such group of terminals is connected to the terminal

node π , we conclude that S is connected.

Finally, since the sets V (p) for all p ∈ US form a complete and

non-overlapping cover of VCF , we derive:

ω(S) =
∑
p∈US

∑
s ∈V (p)(h(s, δp ) + D)

=
∑
s ∈VCF (h(s, L(s)) + D)

= E∗G (L) + D ∗ |VCF |

�

Lemma B.4. Let S be a connected, R-spanning subgraph of H that
is C-Disjoint, F-Disjoint, and CF-Disjoint. There is a proper and ACAP
labelling L on G. In addition, E∗G (L) = ω(S) − D ∗ |VCF |.

Proof. Using a similar argument as in the proof of Lemma B.2,

the sets V (p) for all p ∈ US form a complete and non-overlapping

cover of VCF . For any s ∈ VCF , let U (s) denote the unique node

p ∈ US such that s ∈ V (p). We define the labelling L so that L(s) is
0 (resp. 1) if U (s) is in either UN (resp. UK ) or UC (resp. UF ). Since
each node ofUC (resp.UF ) represents a cuttable (resp. fillable) set
in VCF , and by definition of cuttability and fillability, L is proper.

We next show that L is also ACAP. We first show that any two

reachable neighborhood (resp. kernel) nodes s, t ∈ V must belong

to a connected subgraph of GL,0 (resp. GL,1). Due to symmetry, we

only discuss the case that s, t are reachable neighborhood nodes.

Since S is connected, nodesU (s) andU (t) are connected by a simple

path P in S . That is, P does not contain the same node twice. We

will show that P only contains nodes fromUN andUC . If this is true,
V (P) would form a connected subgraph in GL,0 that contains s, t .
First, P cannot contain any node fromUCF . This is because setsV (p)
for all p ∈ US form a complete and non-overlapping cover of VCF ,
and so each node of UCF is connected to exactly one node of US
and hence cannot be used in a path. Second, and because P avoids

UCF , it cannot contain any node of UK or UF without using the π
node at least twice. Due to simplicity of P , it avoidsUK ,UF as well.

Finally, we need to show that P does not contain π . Suppose to the

contrary that it does, and π divides P into two segments P1, P2 such
that P1 connects U (s) to some node p ∈ UN , P2 connects U (t) to
some other node q ∈ UN , and π is connected to both p and q. Since
both P1 and P2 contain only nodes from UN and UC , s and V (p)
are both contained in some connected subgraph in GL,0, implying

that they are reachable. Similarly, t and V (q) are reachable as well.
However, since π connects to only one node from each group of

nodes ofUN representing a reachable set, V (p) and V (q) cannot be
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reachable. This leads to the contradicting conclusion that s, t are
not reachable.

To complete the argument that L is ACAP, we need to show that

any 0-labelled (resp. 1-labelled) node s ∈ VCF is contained in a

connected subgraph of GL,0 (resp. GL,1) that also contains some

neighborhood (resp. kernel) node. We shall only discuss the case of

a 0-labelled node s . Consider the node U (s) in UC . Note thatU (s) is
only connected to some nodes fromUN orUCF . Since S is connected,
and since each node inUCF is connected to only one node fromUS ,
U (s) must be connected with some node p ∈ UN . As a result, the

connected subgraph of GL,0 spanning V (U (s)) contains both s and
neighborhood node V (p).

Finally, by construction of L, we have:

E∗G (L) =
∑
s ∈VCF h(s, L(s))

=
∑
p∈US

∑
s ∈V (p) h(s, δp )

= ω(S) − D ∗ |VCF |

�

We are now ready to prove Proposition 6.2:

Proof. (Proposition 6.2) Let S be a connected, R-spanning sub-
graph of H with minimal weight. We prove the two statements of

the proposition.

(1) Suppose S is CF-Disjoint. By Lemma B.1, S is also C-Disjoint

and F-Disjoint. Therefore, by Lemma B.4 and the arguments

within its proof, the labelling L obtained by the rule in Proposi-
tion 6.2 (1) is a proper and ACAP labelling onG , and E∗G (L) =
ω(S) − D ∗ |VCF |. It remains to show that L is minimal. Sup-

pose, to the contrary, that there is some other labelling L′

that is also proper and ACAP, such that E∗G (L
′) < E∗G (L). By

Lemma B.3, there is some connected, R-spanning subgraph
S ′ of H such that ω(S ′) = E∗G (L

′) + D ∗ |VCF |. Therefore,

ω(S) = E∗G (L) + D ∗ |VCF |
> E∗G (L

′) + D ∗ |VCF |
= ω(S ′)

which contradicts the assumption that S is minimal.

(2) Suppose S is not CF-Disjoint. Suppose, to the contrary, there is
some proper and ACAP labelling L onG . By Lemma B.3, there

exists some subgraph S ′ of H that is connected, R-spanning,
C-Disjoint, F-Disjoint, and CF-Disjoint. Since S is minimal, S
must be CF-Disjoint by Lemma B.2, which reaches a contra-

diction.

�

C ACAP-TL AND NWST ON PRUNED GRAPH
To support the node-pruning strategy in Section 6.4, we show that

the NWST solved on the pruned graph H still results in a proper

and ACAP labelling (although it may not be optimal). Consider a

subset of nodesU ′C ⊆ UC andU ′F ⊆ UF , and the subgraph H ′ of H
spanning nodesU ′ = {UK ,UN ,UCF ,U

′
F ,U

′
C , {π }}. We show:

Proposition C.1. Let S be a connected subgraph of H ′ that spans
R and is CF-Disjoint, and define labelling L on G such that L(s) is 1
(resp. 0) for any cut or fill node s ∈ V if s ∈ V (p) for some p ∈ U ′F ∩US
(resp. p ∈ U ′C ∩US ). Then L is proper and ACAP.

Proof. Since S is connected, R-spanning, and CF-Disjoint, the

same argument in the proof of Lemma B.2 shows that L as defined

in Proposition C.1 gives each node s ∈ VCF a unique label. Note

that, since S may not be C-Disjoint or F-Disjoint, there could be

multiple nodes ofU ′C (resp.U ′F ) representing the same node in VCF .
Nonetheless, CF-Disjointness ensures that the same node will not

be given different labels. Since each node inU ′C (resp.U ′F ) represents
a cuttable (resp. fillable) set of VCF , L is proper.

To show that L is ACAP, we closely follow the arguments in the

proof of Lemma B.4. The key difference is that, since S may not be

C-Disjoint or F-Disjoint, a node in UCF may connect to multiple

nodes of US , although these nodes are either all in U ′C or all inU ′F
(due to CF-Disjointness of S). We make the following changes to

the proof of Lemma B.4 to reflect this difference:

• In the argument for why two reachable neighborhood nodes

s, t ∈ V belong to a connected subgraph of GL,0, we make

the following change. We will show that the simple path P
connectingU (s),U (t) contains only nodes fromUN ,UC ,UCF
(instead of just UN and UC ). If this is true, V (P) forms the

desired subgraph of GL,0. To show that P avoidsUK andUF ,
note that any node of UCF cannot serve as a “bridge” from

UN ∪UC to UK ∪UF , and hence π will still be present in P
(at least twice) if P contains a node fromUK orUF .
• We use a different argument to show that a 0-labelled node

s ∈ VCF is contained in a connected subgraph of GL,0 that

also contains a neighborhood node. Consider any node p ∈
U ′C ∩ US such that s ∈ V (p). Since S is connected, there is

some terminal node q ∈ UK that is connected top via a simple

path P in S , such that P does not contain any other terminal

node inUK than q. Since nodes inU ′C are only connected to

terminals inUK andUCF , and the latter are only connected to
U ′C , P consists solely of p, q, and nodes of U ′C and UCF . Thus
V (P) forms the desired subgraph of GL,0.

�
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